MOS INTEGRATED CIRCUIT $\mu PD9903$

μ PD9903 ANALOG SUBSCRIBER LINE LSI (DIGITAL CODEC)

The μ PD9903 is a digital CODEC that can be used in analog subscriber circuits such as private branch exchangers (PBXs) and switching equipment for central offices. It features three of the functions required for analog subscriber circuits: 2W/4W conversion, CODEC supervision, and subscriber line supervision.

Use of the μ PD9903 in combination with a BS-SLIC (μ PC7073) can reduce the number of components required in analog subscriber circuits.

FEATURES

NEC

- Single-chip monolithic LSI (CMOS)
- PCM CODEC \rightarrow oversampling-type A/D and D/A converters
- Programmable functions
 - Termination impedance
 - Hybrid balance network
 - Feed resistance
 - Feed current
 - PAD control
 - A-law and µ-law
- Digital gain set function
- Ring-Trip function
- Single power supply (+5 V)
- Low power consumption during standby mode: 20 mW (TYP.)

ORDERING INFORMATION

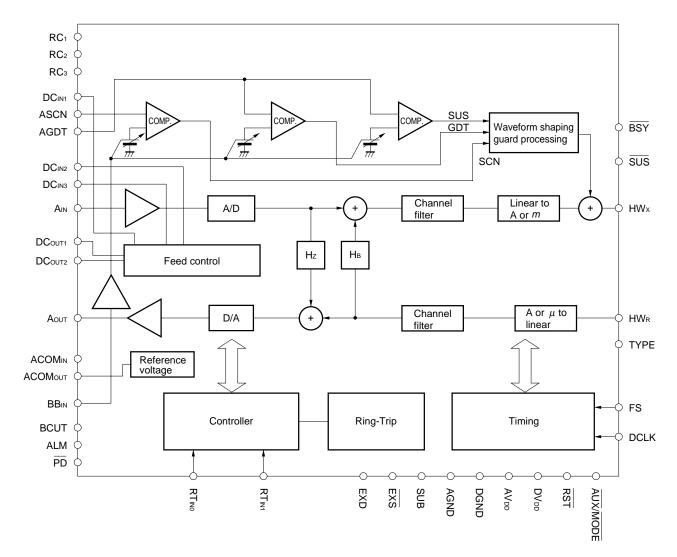
Part Number

Package

μPD9903GT

48-pin plastic shrink SOP (375 mil)

The information in this document is subject to change without notice.


PIN CONFIGURATION (Top View)

48-pin plastic shrink SOP (375 mil)

				1
NC O	$1 \bigcirc$		48	
NC O	$_{2}$		47	
NC O	3		46	
NC O	4		45	
NC O	5		44	
NC O	6		43	
NC O	7		42	
NC O	8		41	<-────────────────────────────────────
NC O	9		40	 Ain
NC O	10	μ	39	— → О Аоυт
AVDD O	11	PD	38	
DVDD1 O	12	μ PD9903GT	37	
DV _{DD2} O	13	030	36	O AGND
	14	GT	35	
BSY O-	15		34	O DGND1
SUS O-	16		33	O DGND2
RST O►	17		32	
EXS O-	18		31	→O ALM
EXD 🖂	19		30	►O BCUT
HWr O	20		29	→O RC1
DCLK O	21		28	→O RC2
FS ○	22		27	►O RC₃
HWx ⊖ -	23		26	
TYPE O-	24		25	←───○ RTIN1

ACOMIN	: ANALOG COMMON VOLTAGE IN D	OGND1, DGND2: DIGITAL GROUND
ACOMout	: ANALOG COMMON VOLTAGE OUT D	OVDD1, DVDD2 : DIGITAL POSITIVE POWER SUPPLY
AGDT	: ANALOG GROUND DETECTION SIGNAL IN E	EXD : EXPANSION PORT DATA
AGND	: ANALOG GROUND E	EXS : EXPANSION PORT SYNCHRONIZATION
Ain	: ANALOG SIGNAL IN F	S : FRAME SYNCHRONOUS CLOCK IN
ALM	: ALARM OUT H	HWR : RECEIVE HIGHWAY DATA IN
Аоит	: ANALOG SIGNAL OUT H	HWX : TRANSMIT HIGHWAY DATA OUT
ASCN	: ANALOG LOOP DETECTION SIGNAL IN N	IC : NO CONNECTION
AUX/MODE	: EXTERNAL SIGNAL IN/MODE CONTROL SET P	PD : POWER DOWN CONTROL OUT
AVdd	: ANALOG POSITIVE POWER SUPPLY R	RC1 - RC3 : RELAY CONTROL OUT
BBIN	: VBB VOLTAGE INFORMATION IN	RST : RESET IN
BCUT	: BATTERY FEED CUT SIGNAL OUT R	RTINO, RTIN1 : RING TRIP SIGNAL IN
BSY	: BUSY SIGNAL OUT S	SUB : SUB GROUND
DCIN1 - DCIN3	: DC FEEDBACK CONTROL IN S	SUS : SUSPEND SIGNAL OUT
DCLK	: DATA CLOCK IN T	TYPE : TYPE SIGNAL OUT
DCouti, DCou	: DC FEEDBACK CONTROL OUT	

BLOCK DIAGRAM

CONTENTS

1.	PIN FUNCTIONS	5
2.	USE CAUTIONS	7
3.	ELECTRICAL SPECIFICATIONS	-
	3.2 Combined Specifications with the μ PC7073	
4.	SYSTEM APPLICATION EXAMPLE USING THE μPC7073 and μPD9903	21
5.	PACKAGE DRAWING	22
6.	RECOMMENDED SOLDERING CONDITIONS	23

1. PIN FUNCTIONS

Number	Pin Name	I/O	Function	
1-10	NC	_	Leave this pin open.	
11	AVDD	_	+5 V power supply (analog)	
12	DV _{DD1}	_	+5 V power supply (digital)	
13	DV _{DD2}	_	+5 V power supply (digital)	
14	AUX/MODE	I	External signaling input	
15	BSY	0	BUSY LED driver output	
16	SUS	0	SUS LED driver output	
17	RST	I	Pin for reset input and power-on reset H: HWx valid, L: HWx output's internal F/F	clear status
18	EXS	0	SIPO sync signal output for expansion port Note	1
19	EXD	0	SIPO serial data output for expansion port Note 1	
20	HWR	I	Reception highway input [PCM data (8-bit) + CTI	_ data (8-bit)]
21	DCLK	I	Clock input (2.048 MHz)	
22	FS	I	8-kHz sync input Rising: HW _R PCM data in Rising: HW _x PCM data o Falling: HW _R CTL data in Falling: HW _x SCN data o	utput start put start
23	HWx	0	Transmission highway output [PCM data (8-bit) +	- SCN data (8-bit)]
24	TYPE	0	HWx data enable	
25	RT _{IN1}	I	Ring-Trip signal input 2	
26	RTINO	I	Ring-Trip signal input 1	
27	RC ₃	0	Relay control for network testing	[to the μ PC7073's pin 22]
28	RC ₂	0	Relay control for line testing	[to the μ PC7073's pin 21]
29	RC1	0	Relay control for ringer transmit	[to the μ PC7073's pin 20]
30	BCUT	0	High and wet control output	[to the μ PC7073's pin 19]
31	ALM	0	Control output for ground-fault/power line contac	t protection mode [to the μ PC7073's pin 18]
32	PD	0	Power-down control output	[to the μ PC7073's pin 17]
33	DGND2	_	Digital ground 2 Note 2	
34	DGND1	_	Digital ground 1 Note 2	
35	SUB	-	Substrate ground Note 2	
36	AGND	-	Analog ground Note 2	
37	ACOMIN	I	Signal ground input Note 3	[to the μ PC7073's pin 11]
38	АСОМоит	0	Signal ground output Note 3	[to the μ PC7073's pin 11]
39	Аоит	0	Analog signal output for receive side	[to the μ PC7073's pin 10]
40	Ain	I	Analog signal input for transmit side	[to the μ PC7073's pin 9]
41	AGDT	I	Tip-Ring sum current detection input	[to the μ PC7073's pin 8]
42	ASCN	I	Tip-Ring difference current detection input	[to the μ PC7073's pin 7]
43	BBIN	I	VBB voltage information input	[to the μ PC7073's pin 6]

Notes 1. SIPO: Serial In Parallel Out

- 2. Short AGND, DGND1, DGND2, and SUB directly under the IC and connect them to an analog ground.
- 3. Short ACOMIN and ACOMOUT directly under the IC.

Number	Pin Name	I/O	Fur	nction
44	DC _{OUT2}	0	DC feedback bias voltage output	[to the μ PC7073's pin 5]
45	DC _{OUT1}	0	DC feedback control output	[to the μ PC7073's pin 4]
46	DCIN1	I	DC feedback control input 1	[to the μ PC7073's pin 3]
47	DC _{IN2}	I	DC feedback control input 2	[to the μ PC7073's pin 2]
48	DCIN3	I	DC feedback control input 3	[to the μ PC7073's pin 1]

2. USE CAUTIONS

(1) Combined characteristics of the μPC9903 and μPD7073

- The μPD9903 is designed to be used in combination with the μPC7073. Therefore, the first half of the electrical specifications described below are ratings for the μPD9903 as a discrete unit while the second half are combined ratings with the μPC7073.
- Subscriber circuit constants that are determined by factors such as termination impedance are configured to enable setting by external order parameters. Consequently, input of an order that is not suitable for the target impedance may result in failure to obtain the required characteristics.

(2) Absolute maximum ratings

Application of voltage or current in excess of the absolute maximum ratings may result in damage. Be especially cautious about surges, etc.

(3) Load of by-pass capacitor

Because the μ PC7073 and μ PD9903 use several internal high-frequency operational amplifiers, high power supply impedance can cause instability in these internal operational amplifiers (such as oscillation). To suppress such instability and eliminate power supply noise, connect by-pass capacitors (CACOM = approximate 0.1 μ F) having superior high frequency characteristics as close as possible to the μ PC7073's power supply pins (VBB and Vcc) and the μ PD9903's power supply pins (AVDD and DVDD).

(4) Addition of ACOM pin connection capacitor

The voltage of the ACOM pin between the μ PC7073 and μ PD9903 is the reference voltage of the signal source between the μ PC9903 and μ PC7073. Superposing of noise on this pin may have adverse effects on transmission characteristics. Therefore, make the wires between the ACOM pins of the two LSIs as short as possible, and connect capacitors (CACOM = approximate 0.1 μ F) having superior high frequency characteristics as close as possible to the pins.

3. ELECTRICAL SPECIFICATIONS

3.1 Discrete unit Ratings

Absolute maximum ratings (T_A = +25 °C)

Parameter	Symbol	Conditions	Rating	Units
Power supply voltage	Vdd	AVDD, DVDD1, DVDD2	-0.3 to +7.0	V
Analog input voltage	VAIN	AIN, ASCN, AGDT, ACOMIN, BBIN, DCIN1, DCIN2, and DCIN3 pins	-0.3 to Vod + 0.3	
Digital input voltage	Vdin	HWR, DCLK, FS, RST, AUX/MODE, RTIN0, and RTIN1 pins	-0.3 to VDD + 0.3	
Applied voltage to analog output pin	Vaout	Aout, DCout1, DCout2, and ACOMout pins	-0.3 to VDD + 0.3	
Applied voltage to digital output pin	Vdout	HWx, BSY, SUS, RC1, RC2, RC3, EXS, EXD, BCUT, ALM, PD, and TYPE pins	-0.3 to VDD + 0.3	
Power dissipation	Рт		500	mW
Ambient operating temperature	TA		0 to +70	°C
Storage temperature	Tstg		-65 to +150	

Caution If the absolute maximum rating for any of the above parameters is exceeded even momentarily, it may adversely affect the quality of this product. In other words, these absolute maximum ratings have been set to prevent physical damage to the product. Do not use the product in such a way as to exceed any of these ratings.

Recommended operating conditions (TA = 0 to 70 °C, VDD = 5 V \pm 5 %, GND = 0 V)

(1) DC conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Ambient operating temperature	TA		0	25	70	°C
Power supply voltage	Vdd		4.75	5.0	5.25	V
Analog input voltage	Vai	ASCN, and AGDT pins	0		Vdd	
Analog input driving resistance	RLA1	ASCN, and AGDT pins			20	kΩ
Analog output load resistance	RLOAD	Aout pin	100			
Analog output load capacitance	CLOAD				100	pF
Low level input voltage	VIL1	FS, DCLK, HW _R , and $\overline{\text{AUX}}/\overline{\text{MODE}}$ pins	0		0.8	V
	VIL2	RST, RTINO, and RTIN1 pins	0		$0.2 imes V_{DD}$	
High level input voltage	VIH1	FS, DCLK, HW _R , and $\overline{\text{AUX}}/\overline{\text{MODE}}$ pins	2.0		Vdd	
	VIH2	\overline{RST} , RT_{IN0} , and RT_{IN1} pins	$0.8 imes V_{DD}$		Vdd	

(2) AC conditions

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Data clock frequency	fdclk	(= 1/tcr) ± 50 ppm		2048		kHz
Data clock pulse width	t DCLK		200			ns
Frame sync clock frequency	fs	± 50 ppm		8.0		kHz
High level frame sync pulse width	twнs		tcy × 8			ns
Low level frame sync pulse width	twLs		tcy × 8			ns
Clock rise time	tR				30	ns
Clock fall time	t⊧				30	ns
Float in sync timing	tcsp1				100	ns
	tcsD2		40			ns
High level width of frame sync clock and data clock	twнsc		100			ns
HW _R set-up time	t dsr	Note 1	65			ns
HWR hold time	t DHR	Note 1	120			ns
Minimum width of reset pulse	PWrst	RST pin Note 2	10			μs

Notes 1. During timing measurement, use 5 ns as the rise time and fall time for the digital input wave form and clock signal.

2. The μ PD9903 is initialized when high level input is applied to the \overline{RST} pin after applying low level input for several clock widths. (However, use of the \overline{RST} pin is not guaranteed during low level input. Also, low level input alone does not initialize the μ PD9903.)

DC Characteristics (TA = 0 to 70 °C, VDD = 5 V \pm 0.25 V, VDG = VAG = 0 V, fDCLK = 2048 kHz, all output pins are unloaded)

(1) Current consumption

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Circuit current	ldd	During normal mode		15	21	mA
Power-down circuit current	Iddpd	During power-down mode		46	6	

(2) Digital interface

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Digital input current	lіD	$0 \le V_{DIN} \le V_{DD}$ for FS, DCLK, HWR, RTIN0, RTIN1, and RST pins	-10		+10	μA
Digital input pull-up current	lı∟	$V_{\text{DIN}} = 0 \text{ V for } \overline{\text{AUX}} / \overline{\text{MODE}} \text{ pin}$	-50	-7	-0.5	
3-state leakage current	١L	$0 \le V_{\text{DIN}} \le V_{\text{DD}}$ for HWx pin	-10		+10	
Low level output voltage	Vol1	IoL = 3.4 mA for HWx pin			0.4	V
	Vol2	$I_{OL} = 0.2 \text{ mA for RC}_1, \text{ RC}_2, \text{ RC}_3, \text{ BCUT}, \text{ ALM, PD, EXS, and EXD pins}$			0.4	
	Vol3	$I_{OL} = 5 \text{ mA for } \overline{BSY} \text{ and } \overline{SUS} \text{ pins}$			1.1	
High level output voltage	Voh1	I_{OH} = –0.6 mA for HWx and TYPE pins	2.4			
	Vон2	$I_{OH} = -2.0 \text{ mA for RC}_1, \text{ RC}_2, \text{ RC}_3, \text{ BCUT}, \text{ ALM, PD, EXS, and EXD pins}$	2.4			
	Vонз	$I_{OH} = 0 \text{ mA for } \overline{BSY} \text{ and } \overline{SUS} \text{ pins}$	Vdd - 0.5			
Output capacitance of digital output pin	Сор	f = 1 MHz, unmeasured pins returned to 0 V			15	pF
Input capacitance of digital input pin	Сір	f = 1 MHz, unmeasured pins returned to 0 V			10	

(3) AIN pin

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Input bias current	Ів	Input voltage:	-10		+10	μA
Input resistance	Rin		1			MΩ
Input capacitance	CIN				10	pF

(4) AOUT pin

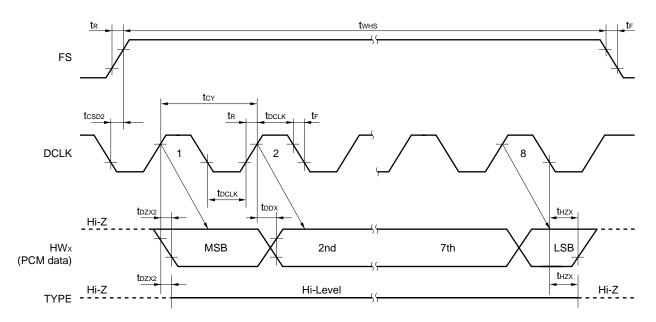
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Output offset voltage	Voa	HWR PCM data: zero PCM code, referenced to VACOM	-100		+100	mV
Output resistance	Rout	I/O current: -100 to +100 μA			50	Ω

(5) ASCN and AGDT output pins

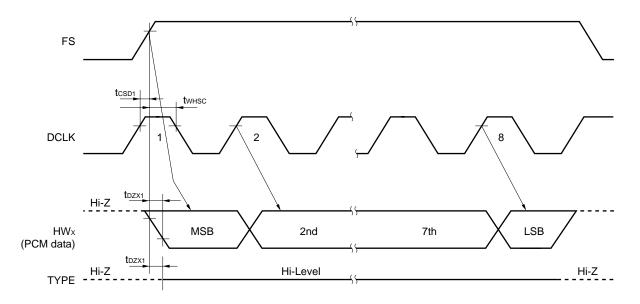
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Input bias current	lв	Input voltage: 0 to VDD	-10		+10	μA
Input resistance	RIN		1			MΩ

(6) ACOMout pin

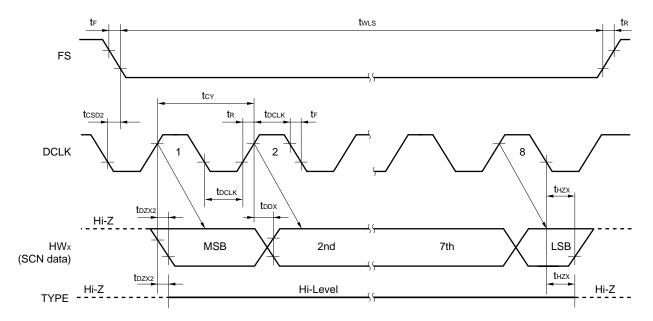
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Output voltage	Vасом	I/O current: -0.1 to +0.1 mA	2380		2420	mV

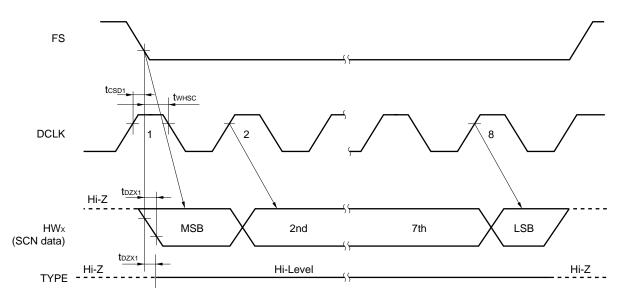

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Units
Data enable delay time	tdzx1	HWx and TYPE pins, when FS is delayed longer than DCLK			170	ns
	tdzx2	HWx and TYPE pins, when DCLK is delayed longer than FS			170	ns
Data delay time	tddx	HWx pin			180	ns
Data hold time	tHZX	HWx and TYPE pins	30		200	ns
Delay time to \overline{EXS} falling edge	t DEXSf	EXS pin			120	ns
Delay time to EXS rising edge	t DEXSr	EXS pin			120	ns
EXD data delay time	t DEXD	EXD pin			120	ns
Signaling bit set-up delay time	tosig				2	μs
Status bit set-up delay time	t DST				2	μs
LED driver set-up delay time	t DLED	BSY and SUS pins			2	μs
Delay time to rising edge	t⊤н∟				100	ns
Delay time to falling edge	tтьн				100	ns
Transmit delay time to external bit	t daux	AUX pin			125	μs

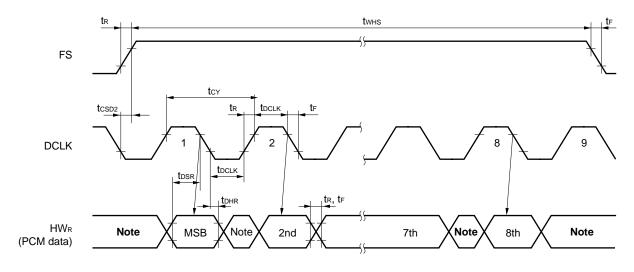
AC characteristics (TA = 0 to 70 $^{\circ}\text{C},$ Vdd = 5 V \pm 0.25 V, Vdg = VAg = 0, fdclk = 2048 kHz)

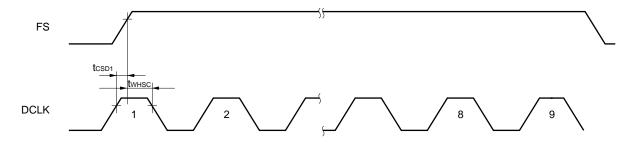

NEC

Timing charts

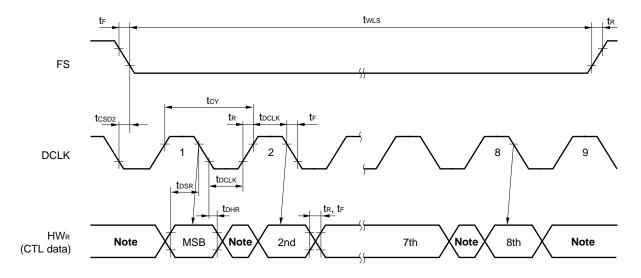

- (1) PCM data transmission timing (HWx pin)
 - (a) DCLK is later than FS


(b) FS is later than DCLK


- (2) SCN data transmission timing (HWx pin)
 - (a) DCLK is later than FS

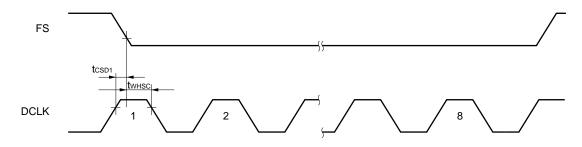


- (3) PCM data reception timing (HWR pin)
 - (a) DCLK is later than FS



Note Don't care


(b) FS is later than DCLK



- (4) CTL data reception timing (HWR pin)
 - (a) DCLK is later than FS

Note Don't care

3.2 Combined Specifications with the μ PC7073

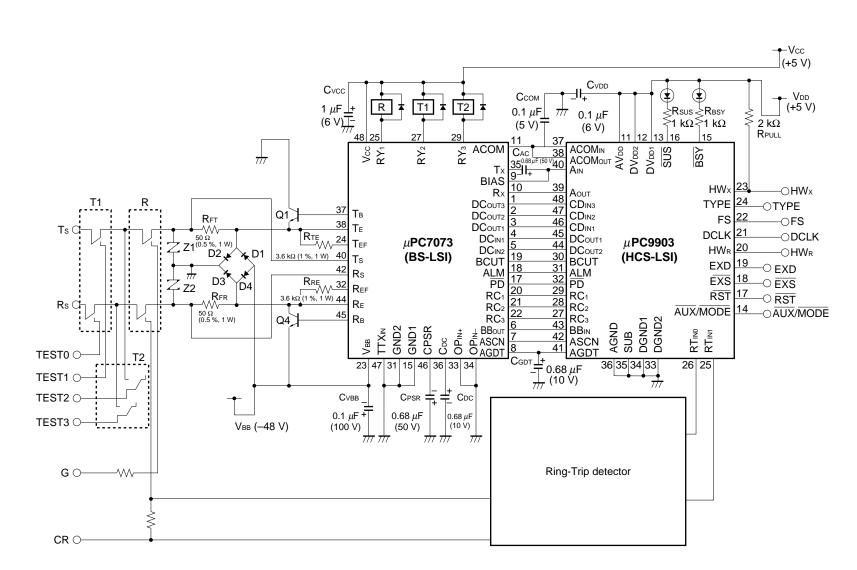
DC characteristics

 μ PC7073 (V_{BB} = -42 to -58 V, V_{CC} = 5 V ± 0.25 V, T_A = 0 to 70 °C, 18 ≤ I_L ≤ I_{LMAX} (mA)) μ PD9903 (T_A = 0 to 70 °C, V_{DD} = 5 V ± 0.25 V, V_{DG} = V_{AG} = 0 V, f_{DCLK} = 2048 kHz)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Units
DC feed resistance	Rbf	200 Ω feed		180	200	220	Ω
		400 Ω feed		360	400	440	
Minimum loop current	Ilmin	V _{BB} = -51 V	200 Ω feed	21.7	22.2	22.6	mA
		RL = 1900 Ω	400 Ω feed	18.2	18.8	19.3	
Maximum current setting	ILMAX	ILMAX = 76 mA setting	200 Ω feed	70	76	82	mA
value			400 Ω feed	50	55	60	
		ILMAX = 45 mA setting		40	45	50	
		ILMAX = 35 mA setting		31	35	39	
Pin voltage during on-hook	Vts	Normal on-hook, between Tip and GND,	Normal on-hook, between Tip and GND, $V_{BB} = -48 \text{ V}$		2.55	2.85	V
	Vrs	Normal on-hook, between Ring and VBB,	Normal on-hook, between Ring and VBB, VBB = -48 V		3.35	3.65	
	VTS	On-hook transmission, between Tip and GND,	On-hook transmission, between Tip and GND, $V_{BB} = -48 \text{ V}$		2.55	2.85	
	Vrs	On-hook transmission, between Ring and Vвв, Vвв = -48 V		3.05	3.35	3.65	
Voltage between lines during on-hook	Vts	V _{BB} = -48 V		Vвв – 7.0	V _{BB} – 5.9	V _{BB} -5.0	V
Supervisory control – VBB abnormal voltage	VBBF			32	35	38	V

Parameter ^{Note}	Symbol	Conditi	ons	MIN.	TYP.	MAX.	Units
Loop detection operating resistance (during normal transmission)	Ron1	Includes termination resistance	$200 \ \Omega$ feed $400 \ \Omega$ feed			2500 2100	Ω
Loop detection non-operating resistance (during normal transmission)			200 Ω feed 400 Ω feed	3900 3500			
Loop detection operating resistance (during on hook transmission)	Ron2	Includes termination resistance	200 Ω feed 400 Ω feed			1900 1500	Ω
Loop detection non-operating resistance (during on hook transmission)			200 Ω feed 400 Ω feed	2840 2440			
Loop release non-operating resistance	Ronз	Includes termination resistance	200 Ω feed 400 Ω feed			2960 2560	Ω
Loop release operating resistance			$200 \ \Omega$ feed $400 \ \Omega$ feed	4540 4140			
Ground detection 1 (C/O) operating resistance	Ron4	Includes termination resistance				5.2	kΩ
Ground detection 1 (C/O) non-operating resistance				20			
Ground-fault/power line	Ron6	Includes termination	I _{LMAX} = 45/76 mA			340	Ω
contact detection operating resistance		resistance Off-hook state	Ilmax = 35 mA			480	
Ground-fault/power line	_	Includes termination	ILMAX = 45/76 mA	870			Ω
contact detection non- operating resistance		resistance	Ilmax = 35 mA	1130			
Ground-fault/power line contact release non- operating resistance	Ron7	Includes termination re	esistance			1.4	kΩ
Ground-fault/power line contact release operating resistance				10			

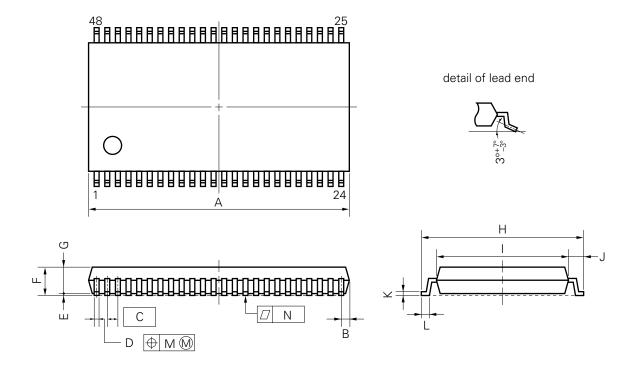
Note The above values are resistance-converted values.


Transmission characteristics

 μ PC7073 (V_{BB} = -42 to -58 V, V_{CC} = 5 V ± 0.25 V, T_A = 0 to 70 °C, 18 \leq I_L \leq I_{LMAX} (mA)) μ PD9903 (T_A = 0 to 70 °C, V_{DD} = 5 V ± 0.25 V, V_{DG}= V_{AG} = 0 V, f_{DCLK} = 2048 kHz)

Parameter	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Units
Insertion loss	IL	A-D input signal 0 dBm0 1 kHz		-0.45	0.0	+0.45	dB
		D-A input signal 0 dBm0 1 kHz		-0.45	0.0	+0.45	
Transfer loss frequency characteristics	Frx	A-D Reference input signal 1015 Hz 0 dBm0	60 Hz 200 Hz 300 Hz 400 to 3000 Hz	24.0 0.6 -0.15 -0.15		- 2.0 +0.21 +0.15	dB
			3200 Hz 3400 Hz	-0.15 0.2		+0.65 0.8	
	Frr	D-A Reference input signal 1015 Hz 0 dBm0	60 Hz 200 Hz 300 Hz 400 to 3000 Hz 3200 Hz 3400 Hz	0.2 0.1 -0.15 -0.15 -0.15 0.2		4.0 1.0 +0.25 +0.15 +0.65 0.8	
Gain tracking (tone method)	GTx	A-D Reference input signal –10 dBm0 f = 700 to 1100 Hz	+3 to -40 dBm0 -50 dBm0 -55 dBm0	-0.2 -0.5 -1.0		+0.2 +0.5 +1.0	dB
	GTR	D-A Reference input signal -10 dBm0 f = 700 to 1100 Hz	+3 to -40 dBm0 -50 dBm0 -55 dBm0	-0.2 -0.4 -0.8		+0.2 +0.4 +0.8	
Return loss	RL	Input signal 0 dBm0 Ζτ = 600 Ω + 2.16 μF	300 Hz 500 to 2000 Hz 2000 to 3400 Hz	16 20 16			dB
Echo attenuation	TBRL	Input signal 0 dBm0 Z⊤ = 600 Ω + 2.16 μF	300 Hz 500 to 2500 Hz 3400 Hz	18 22 18			dB
Transmit channel total power distortion factor (tone method)	SDx	A-D Input signal f = 700 to 1100 Hz	+3 to -30 dBm0 -40 dBm0 -45 dBm0	36 30 25			dB
	SDr	D-A Input signal f = 700 to 1100 Hz	+3 to -30 dBm0 -40 dBm0 -45 dBm0	36 30 25			

Parameter	Symbol		C	Conditions	MIN.	TYP.	MAX.	Units
Absolute delay characteristics	Da	A-A Inp	A-A Input signal 0 dBm0				540	μs
Absolute delay distortion frequency characteristics	Do	A-A		500 Hz 600 HZ 1000 to 2600 Hz 2800 Hz			1400 700 200 1400	
Intermodulation (2 Tone)	IMD	f1, f2: Measur	A-D Input signal f1, f2: 300 to 3400 Hz -4 to -21 dBm0 Measurement signal: 2 × f1 - f2 level (2 × f1 - f2) vs level (f1, f2)		44.0			dB
		Measur	300 to 3 -4 to 2 rement	I 3400 Hz –21 dBm0 signal: 2 × f1 − f2 f2) vs level (f1, f2)	44.0			
Single frequency noise	Nsf	D-A PAD level set at 0 dB Measurement signal up to f = 256 kHz				-54	dBm0	
Deviation in gain setting for transmission channel	ΔDGSx	A-D Difference from reference set value Setting value: +7.5 to +3.0 dB +3.0 to -3.5 dB		-0.2 -0.1		+0.2 +0.1	dB	
Deviation in gain setting for reception chanel	ΔDGSr	D-A Difference from reference set value Setting value: 0.0 to -5.0 dB -5.0 to -8.5 dB		-0.1 -0.2		+0.1 +0.2	-	
Idle circuit noise	IDN ₂₄	2W-4W	A-law	Psophometric weighted			-67	dBm0p
			μ-law	C message weighted			23	dBrnc0
	IDN ₄₂	4W-2W	A-law μ-law	Psophometric weighted C message weighted			-76 14	dBm0p dBrnc0
Line to ground balance attenuation	LCL			42 48			dB	
AC induction noise	LFI	I∟ = 0 m/	4	VIN = 6 Vrms			43	dBrnc
resistance		I∟ = 20 m	ηA	VIN = 15 Vrms			20	



4 SYSTEM APPLICATION EXAMPLE USING THE μ PC7073 AND μ PD9903

21

5. PACKAGE DRAWING

48 PIN PLASTIC SHRINK SOP (375 mil)

NOTE

Each lead centerline is located within 0.10 mm (0.004 inch) of its true position (T.P.) at maximum material condition.

		P48GT-65-375B-1
ITEM	MILLIMETERS	INCHES
А	16.21 MAX.	0.639 MAX.
В	0.63 MAX.	0.025 MAX.
С	0.65 (T.P.)	0.026 (T.P.)
D	0.30±0.10	0.012 ^{+0.004} 0.005
E	0.125±0.075	0.005±0.003
F	2.0 MAX.	0.079 MAX.
G	1.7±0.1	0.067±0.004
Н	10.0±0.3	0.394 ^{+0.012} _{-0.013}
Ι	8.0±0.2	0.315±0.008
J	1.0±0.2	0.039 ^{+0.009} _{-0.008}
К	$0.15_{-0.05}^{+0.10}$	0.006 ^{+0.004} 0.002
L	0.5±0.2	0.020 ^{+0.008} -0.009
М	0.10	0.004
Ν	0.10	0.004

6. RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the conditions recommended below.

For details of recommended soldering conditions, refer to the information document **Semiconductor Device Mounting Technology Manual (C10535E)**.

For soldering methods and conditions other than those recommended, please contact your NEC sales representative.

SURFACE MOUNT TYPE

μ PC9903GT: 48-pin plastic shrink SOP (375 mil)

Soldering Method	Soldering Conditions	Recommended Condition Symbol
Infrared ray reflow	Package peak temperature: 235 °C Reflow time: 30 sec. max. (210 °C or above) Number of times: 1 time	IR35-00-1
Partial heating method	Pin temperature: 300 °C max. Heat time: 3 sec. max. (per each side of the device)	_

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

NEC

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.