96-Bit AC-PDP DRIVER

The μ PD16334 is a high-voltage CMOS driver designed for flat display panels such as PDPs, VFDs and ELs. It consists of a 96-bit bi-directional shift register, 96-bit latch and high-voltage CMOS driver. The logic block is designed to operate using a 5-V power supply/3.3-V interface enabling direct connection to a gate array or a microcontroller. In addition, the μ PD16334 achieves low power dissipation by employing the CMOS structure while having a high withstand voltage output ($80 \mathrm{~V}, 50 \mathrm{~mA}$).

FEATURES

- Selectable by IBS pin; three 32-bit bi-directional shift register circuits configuration or six 16-bit bi-directional shift register circuits configuration
- Data control with transfer clock (external) and latch
- High-speed data transfer ($f_{\max }=25 \mathrm{MHz} \min$. at data fetch)
($f_{\text {max. }}=15 \mathrm{MHz} \mathrm{min}$. at cascade connection)
- High withstand output voltage ($80 \mathrm{~V}, 50 \mathrm{mAmax}$.)
- 3.3 V CMOS input interface
- High withstand voltage CMOS structure
- Capable of reversing all driver outputs by $\overline{\mathrm{PC}}$ pin

ORDERING INFORMATION

Part Number	Package
μ PD16334	COB *

* Please consult with an NEC sales representative about COB.

BLOCK DIAGRAM (IBS = H, 3-BIT INPUT, 32-BIT LENGTH SHIFT REGISTER)

BLOCK DIAGRAM (IBS = L, 6-BIT INPUT, 16-BIT LENGTH SHIFT REGISTER)

PIN DESCRIPTION

Symbol	Pin Name	Description
$\overline{\mathrm{PC}}$	Polarity change input	$\overline{\mathrm{PC}}=\mathrm{L}$: All driver output invert
BLK	Blank input	BLK $=\mathrm{H}$: All output $=\mathrm{H}$ or L
LE	Latch enable input	Automatically executes latch by setting high at rising edge of the clock
OE	Output enable	Make output high impedance by input H
A_{1} to $\mathrm{A}_{3}(6)$	RIGHT data input/output (Note)	When $\mathrm{R} / \mathrm{L}=\mathrm{H}$ (values in parentheses are for 6-bit input) A_{1} to $A_{3(6)}$: Input B_{1} to $B_{3(6)}$: Output
B_{1} to $\mathrm{B}_{3}(6)$	LEFT data input/output (Note)	When $R / \bar{L}=L$ (values in parentheses are for 6-bit input) A_{1} to $A_{3(6)}$: Output B_{1} to $B_{3(6)}$: Input
$\overline{\text { CLK }}$	Clock input	Shift executed on fall
R/L	Shift control input	Right shift mode when R/ $\bar{L}=\mathrm{H}$ $\mathrm{SR}_{1}: \mathrm{A} 1 \rightarrow \mathrm{~S}_{1} \ldots \mathrm{~S}_{94} \rightarrow \mathrm{~B} 1$ (Same direction for SR_{2} to SR_{6}) Left shift mode when $R / \bar{L}=L$ $\mathrm{SR}_{1}: \mathrm{B}_{1} \rightarrow \mathrm{~S}_{94} \ldots \mathrm{~S}_{1} \rightarrow \mathrm{~A}_{1}$ (Same direction for SR_{2} to SR_{6})
IBS	Input mode switch	H: 32-bit length shift register, 3-bit input L: 16-bit length shift register, 6-bit input
O 1 to O96	High withstand voltage output	$80 \mathrm{~V}, 50 \mathrm{mAmax}$.
VDD1	Power supply for logic block	$5 \mathrm{~V} \pm 10$ \%
VDD2	Power supply for driver block	10 to 70 V
Vss1	Logic GND	Connect to system GND
Vss2	Driver GND	Connect to system GND

Note When input mode is 3-bit, set unused input and output pins "L" level.
TRUTH TABLE 1 (Shift Register Block)

Input		Output		Shift Register
R/ \bar{L}	$\overline{\text { CLK }}$	A	B	
H	\downarrow	Input	Output Note1	Right shift execution
	H	H or L		Output
L	\downarrow	Output Note2	Input	Left shift execution
L	H or L	Output		Hold

Notes 1. The data of S_{91} to $S_{93}\left(S_{85}\right.$ to S_{90}) shifts to S_{94} to $S_{96}\left(S_{91}\right.$ to S_{96}) and is output from B_{1} to $B_{3}\left(B_{1}\right.$ to $\left.B_{6}\right)$ at the falling edge of the clock, respectively. (Values in parentheses are for 6-bit input)
2. The data of S_{4} to $S_{6}\left(S_{7}\right.$ to $\left.S_{12}\right)$ shifts to S_{1} to $S_{3}\left(S_{1}\right.$ to $\left.S_{6}\right)$ and is output from A_{1} to $A_{3}\left(A_{1}\right.$ to $\left.A_{6}\right)$ at the falling edge of the clock, respectively (Values in parentheses are for 6-bit input)

TRUTH TABLE 2 (Latch Block)

LE	$\overline{\text { CLK }}$	Output State of Latch Block $\left(\overline{L_{n}}\right)$
H	\uparrow	Latch Sn data and hold output data
	\downarrow	Hold latch data
L	X	Hold latch data

TRUTH TABLE 3 (Driver Block)

$\overline{L_{n}}$	BLK	$\overline{\text { PC }}$	OE	Output State of Driver Block
X	H	H	L	H (All driver outputs: H)
X	H	L	L	L (All driver outputs: L)
X	L	H	L	Output latch data $\left(\overline{\mathrm{L}_{n}}\right)$
X	L	L	L	Output inverted latch data $\left(\overline{\mathrm{L}_{n}}\right)$
X	X	X	H	Set output impedance high

X: H or L, H: High level, L: Low level

TIMING CHART (WHEN IBS=" H ": 3-BIT INPUT, RIGHT SHIFT)
Values in parentheses in the following chart are when $R / \bar{L}=L$.

TIMING CHART (WHEN IBS="L": 6-BIT INPUT, RIGHT SHIFT)
Values in parentheses in the following chart are when $R / \bar{L}=L$.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	Ratings	Unit
Logic Block Supply Voltage	$\mathrm{V}_{\text {DD } 1}$	-0.5 to +7.0	V
Driver Block Supply Voltage	VDD 2	-0.5 to +80	V
Logic Block Input Voltage	VI	-0.5 to $\mathrm{VDD1}+0.5$	V
Driver Block Output Current	lo 2	50	mA
Junction Temperature	T_{j}	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS ($\mathrm{T}_{\mathrm{A}}=-\mathbf{4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vss} 1=\mathrm{Vss} 2=0 \mathrm{~V}$)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Logic Block Supply Voltage	VDD1 $^{\prime \prime}$	4.75	5.0	5.25	V
Driver Block Supply Voltage	$\mathrm{V}_{\text {DD2 }}$	10		70	V
High-Level Input Voltage	V_{IH}	2.7		$\mathrm{~V}_{\text {DD1 }}$	V
Low-Level Input Voltage	V_{IL}	0		0.6	V
Driver Output Current	Іон2			-40	mA
	loL2			+40	mA

Caution In order to prevent latch-up breakage, be sure to enter the power to $\mathrm{V}_{\mathrm{DD} 1}$, logic signal and V_{DD} in that order, and turn off the power in the reverse order, keep this order also during a transition period.

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
High-Level Output Voltage	Vон1	Logic, $\mathrm{I}_{\text {OH1 }}=-1.0 \mathrm{~mA}$	$0.9 \cdot \mathrm{VDD}^{1}$		VDD1	V
Low-Level Output Voltage	Vol1	Logic, loL1 $=1.0 \mathrm{~mA}$	0		$0.1 \mathrm{VDD1}$	V
High-Level Output Voltage	Voh21	O_{1} to $\mathrm{O}_{96}, \mathrm{loн}_{2}=-1 \mathrm{~mA}$	69			V
	VoH22	O_{1} to $\mathrm{O}_{96}, \mathrm{Ioh2}^{2}=-10 \mathrm{~mA}$	65			V
Low-Level Output Voltage	VoL21	O_{1} to $\mathrm{O}_{96}, \mathrm{loL2}=5 \mathrm{~mA}$			1.0	V
	VoL22	O1 to $\mathrm{O}_{96}, \mathrm{loL}_{2}=40 \mathrm{~mA}$			10	V
Input Leakage Current	IIL	$\mathrm{V}_{1}=\mathrm{V}_{\text {DD } 1}$ or $\mathrm{V}_{\text {SS } 1}$			± 1.0	$\mu \mathrm{A}$
High-Level Input Voltage	VIH	$V_{\text {DD } 1}=4.75$ to 5.25 V	2.7			V
Low-Level Input Voltage	VIL	$\mathrm{V}_{\mathrm{DD} 1}=4.75$ to 5.25 V			0.6	V
Static Current Dissipation	IdD1	Logic, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			$10^{\text {Note }}$	mA
	IdD1	Logic, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$10^{\text {Note }}$	mA
	Ido2	Driver, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$			1000	$\mu \mathrm{A}$
	IdD2	Driver, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			100	$\mu \mathrm{A}$

Note When all inputs are high-level ($\mathrm{V}_{1 H}=2.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD} 1}$, the R / L and IBS pins are fixed to $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{S S 1}$ or $\mathrm{V}_{\mathrm{DD} 1}$)

SWITCHING CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, VDD1 $=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=70 \mathrm{~V}$, $\mathrm{V}_{\mathrm{SS} 1}=\mathrm{V}_{\mathrm{SS} 2}=0 \mathrm{~V}$, Logic $\mathrm{C}_{\mathrm{L}}=$ 15 pF , Driver $\mathrm{CL}=50 \mathrm{pF}, \mathrm{tr}=\mathrm{tt}=\mathbf{6 . 0} \mathrm{ns}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transmission Delay time	tPHL1	$\overline{\mathrm{CLK}} \downarrow \rightarrow \mathrm{A} / \mathrm{B}$			55	ns
	tPLH1				55	ns
	tphL2	$\overline{\mathrm{CLK}} \uparrow(\mathrm{LE}=\mathrm{H}) \rightarrow \mathrm{O}_{1}$ to O_{96}			180	ns
	tPLH2				180	ns
	tPHL3	$\mathrm{BLK} \rightarrow \mathrm{O}_{1}$ to O_{96}			165	ns
	tPLH3				165	ns
	tphl4	$\overline{\mathrm{PC}} \rightarrow \mathrm{O}_{1}$ to O_{96}			160	ns
	tPLH4				160	ns
	tPHz	$\begin{aligned} & \mathrm{OE} \rightarrow \mathrm{O}_{1} \text { to } \mathrm{O}_{96} \\ & \mathrm{RL}=10 \mathrm{~kL} \Omega \end{aligned}$			300	ns
	tpzH				180	ns
	tplz				300	ns
	tpzL				180	ns
Rise Time	tith	O_{1} to O_{96}			150	ns
	ttız	$\begin{aligned} & \mathrm{RL}=10 \mathrm{k} \Omega \\ & \mathrm{O}_{1} \text { to } \mathrm{O}_{96} \end{aligned}$			3	$\mu \mathrm{s}$
	tizH				150	ns
Fall Time	tтHL	O_{1} to O_{96}			150	ns
	tThz	$\begin{aligned} & \mathrm{RL}=10 \mathrm{k} \Omega \\ & \mathrm{O}_{1} \text { to } \mathrm{O}_{96} \end{aligned}$			3	$\mu \mathrm{s}$
	t tzL				150	ns
Maximum Clock Frequency	fmax	When data is read, duty 50%	25			MHz
		cascade connection, Duty 50%	15			MHz
Input Capacitance	C।				15	pF

TIMING REQUIREMENT ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD1}=4.75$ to $5.25 \mathrm{~V}, \mathrm{Vss} 1,2=0 \mathrm{~V}, \mathrm{tr}=\mathrm{tf}=6.0 \mathrm{~ns}$)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Clock Pulse Width	PWCLK		20			ns
Latch Enable Pulse Width	PWLE		30			ns
Blank Pulse Width	PWbıк		200			ns
$\overline{\text { PC Pulse Width }}$	PW $\overline{\text { PC }}$		200			ns
OE Pulse Width	PWoe	$\mathrm{RL}=10 \mathrm{k} \Omega$	3.3			$\mu \mathrm{s}$
Data Setup Time	tsetup		10			ns
Data Hold Time	thold		10			ns
Latch Enable Time 1	tLE1		25			ns
Latch Enable Time 2	tLE2		5			ns
Latch Enable Time 3	tLe3		25			ns
Latch Enable Time 4	tLE 4		5			ns

SWITCHING CHARACTERISTICS WAVEFORM

[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

