a

Zero-Drift, Single-Supply, Rail-to-Rail Input/Output Low Noise Operational Amplifier

Preliminary Technical Data

AD8628

FEATURES

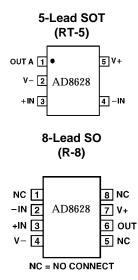
Lowest auto-zero amplifier noise Low Offset Voltage: 5 μ V Input Offset Drift: 0.03 μ V/°C Rail-to-Rail Input and Output Swing 5 V Single-Supply Operation High Gain, CMRR, and PSRR: 120 dB Very Low Input Bias Current: 100 pA

Low Supply Current: 1.3 mA Overload Recovery Time: 0.2 ms No External Components Required

APPLICATIONS

Automotive Sensors
Pressure and Position Sensors
Strain Gage Amplifiers
Medical Instrumentation
Thermocouple Amplifiers

GENERAL DESCRIPTION


This new family of amplifiers has ultra-low offset, drift and bias current. The AD8628 is a wide bandwidth auto-zero amplifier featuring rail-to-rail input and output swings and low noise. Operation is fully specified from 2.7 to 5 volts single supply (±1.35V to ±2.5V dual supply).

The AD8628 family provides the benefits previously found only in expensive auto-zeroing or chopper-stabilized amplifiers. Using Analog Devices' new topology these zero-drift amplifiers combine low cost, with high accuracy and low noise. (No external capacitors are required.) In addition, the AD8628 greatly reduces the digital switching noise found in most chopper stabilized amplifiers.

With an offset voltage of only $1\mu V$, drift less than $0.005 \ \mu V/^{\circ}C$ and noise of only 0.5 uV P-P (0Hz to 10 Hz) the AD8628 is perfectly suited for applications where error sources cannot be tolerated. Position and pressure sensors, medical equipment, and strain gage amplifiers benefit greatly from nearly zero drift over their operating temperature range. Many systems may take advantage of the rail-to-rail input and output swings provided by

the AD8628 family to reduce input biasing complexity and maximize SNR.

The AD8628 family is specified for the extended industrial $(-40^{\circ} \text{ to } +125^{\circ}\text{C})$ temperature range. The AD8628 amplifier is available in the tiny SOT23 and the popular 8-pin narrow SOIC plastic packages.

AD8628

$\begin{tabular}{ll} \textbf{ELECTRICAL SPECIFICATIONS} \ (@\ V_S=+5.0V,\ V_{CM}=+2.5V,\ V_O=+2.5V,\ T_A=+25^{\circ}C\ unless\ otherwise\ specified.) \\ \end{tabular}$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	V_{OS}			1	5	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			10	μV
Input Bias Current	I_{B}			30	100	pA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			1.5	nA
Input Offset Current	I _{OS}			50	200	pA
		-40 °C $\leq T_A \leq +125$ °C			250	pA
Input Voltage Range		11	0		5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0V$ to 5V	120	140		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	115	130		dB
Large Signal Voltage Gain (Note 1)	A _{VO}	$R_L = 10 \text{ k}\Omega, \text{ Vo} = 0.3 \text{ to } 4.7\text{ V}$	125	145		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	120	135		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.002	0.03	μV/°C
OUTPUT CHARACTERISTICS	2.03/21	10 0 = 1 _A = 1120 0		0.002	0.02	F * * * * * * * * * * * * * * * * * * *
Output Voltage High	V _{OH}	$R_L = 100 k\Omega$ to Ground	4.99	4.996		V
output vollage riigh	OH	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	4.99	4.995		v
		$R_L = 10k\Omega$ to Ground	4.95	4.98		V
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		4.98		V
	37	1	4.95		10	
Output Voltage Low	V _{OL}	$R_L = 100k\Omega$ to V+		1	10	mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		2	10	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		10	20	mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		15	20	mV
Short Circuit Limit	I _{SC}		± 25	± 50		mA
		-40 °C $\leq T_A \leq +125$ °C		± 40		mA
Output Current	I _O			± 30		mA
		-40 °C $\leq T_A \leq +125$ °C		± 15		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = 2.7V \text{ to } 5.5V$	120	130		dB
		-40 °C $\leq T_A \leq +125$ °C	115	130		dB
Supply Current/Amplifier	I _{SY}	$V_O = 0V$		1.3	1.5	mA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		1.6	1.8	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		0.8		V/µs
Overload Recovery Time				0.05	0.2	ms
Gain Bandwidth Product	GBP			2.5		MHz
NOISE PERFORMANCE						
Voltage Noise	e _{n p-p}	0.1 to 10 Hz		0.5		μV _{p-p}
Voltage Noise	e _{n p-p}	0.1 to 1.0 Hz		0.16		μV _{p-p}
Voltage Noise Density	e _n	f = 1 kHz		22		nV/√Hz
Current Noise Density	in	f=10 Hz		5		fA/√Hz

Note 1: Gain testing is highly dependent upon test bandwidth.

AD8628

$\textbf{ELECTRICAL SPECIFICATIONS} \ (@\ v_{S}=+2.7 \text{V},\ v_{CM}=+1.35\ \text{V},\ v_{O}=1.4 \text{V},\ T_{A}=+25 ^{\circ}\text{C} \ unless \ otherwise \ specified.})$

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage AD8628	V _{OS}			1	5	μV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			10	μV
Input Bias Current	I _B			30	100	pA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		1.0	1.5	nA
Input Offset Current	I _{OS}			50	200	pA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$			250	pA
Input Voltage Range			0		5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = 0$ to 2.9V	115	130		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	110	120		dB
Large Signal Voltage Gain	A _{VO}	$R_L = 10 \text{ k}\Omega$, Vo=0.3 to 4.7V	110	140		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	105	130		dB
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.002	0.03	μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 100 k\Omega$ to Ground	2.68	2.695		V
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	2.68	2.695		V
		$R_{\rm L} = 10 k\Omega$ to Ground	2.67	2.68		V
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	2.67	2.675		V
Output Voltage Low	V_{OL}	$R_L = 100k\Omega$ to V+		1	10	mV
output Voltage Dow	, OL	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		2	10	mV
		$R_L = 10 \text{ k}\Omega \text{ to V} +$		10	20	mV
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		15	20	mV
Short Circuit Limit	T	-40 C \(\frac{1}{4} \) \(\frac{1}{2} \) \(\frac{1}{2} \)	±10	± 15	20	mA
Short Circuit Limit	I_{SC}	40°C < T < +125°C	_10			
Outrast Comment	T	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		± 10		mA
Output Current	I_{O}	400G 4 T 4 1250G		± 10		mA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		± 5		mA
POWER SUPPLY	DCDD	V 27V4- 55V	120	120		dr.
Power Supply Rejection Ratio	PSRR	$V_S = 2.7V \text{ to } 5.5 \text{ V}$	120	130		dB
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	115	130	1.4	dB
Supply Current/Amplifier	I_{SY}	$V_O = 0V$		1.1	1.4	mA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		1.3	1.6	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		1		V/µs
Overload Recovery Time	CDD			0.05		ms MII-
Gain Bandwidth Product	GBP			2		MHz
NOISE PERFORMANCE Voltage Noise	P	0.1 to 10 Hz		0.75		l uV
Voltage Noise Density	e _{n p-p}					μV_{p-p} nV/\sqrt{Hz}
-	e _n	f = 1 kHz		33		fA/√Hz
Current Noise Density	in	f=10 Hz		5		IA/ VIIZ

AD8628

ABSOLUTE MAXIMUM RATINGS

Supply Voltage	
Input Voltage	
Differential Input Voltage ¹	±5.0V
Output Short-Circuit Duration to Gnd	Indefinite
Storage Temperature Range	
RT, R Package	65°C to $+150$ °C
Operating Temperature Range	
AD8628	40°C to $+125$ °C
Junction Temperature Range	
RT, R Package	65°C to $+150$ °C
Lead Temperature Range (Soldering, 10 sec)+300°C

Package Type	θ_{JA}^2	θЈС	Units
5-Pin SOT23 (RT)			°C/W
8-Pin SOIC (R)	158	43	°C/W

NOTES

ORDERING GUIDE

Model	Temperature	Package	Package
	Range	Description	Option
AD8628ART	-40°C to +125°C	5-Pin SOT23	RT-5
AD8628AR	-40°C to +125°C	8-Pin SOIC	SO-8

 $^{^{1}}$ Differential input voltage is limited to ± 5.0 volts or the supply voltage, whichever is less.

 $^{^2}$ θ_{JA} is specified for the worst case conditions, i.e., θ_{JA} is specified for device in socket for P-DIP packages; θ_{JA} is specified for device soldered in circuit board for SOIC and TSSOP packages.